Motivation	Model Analysis	Construction	Self-paced Curriculum Learning	

Concave Conjugacy of Self-paced Learning

Shiqi Liu Instructor: Deyu Meng Cooperative partner: Zilu Ma Haocheng Wang

Research Training Presentation, 2016

Motivation	Model Analysis	Construction	Self-paced Curriculum Learning	
Outlir	ıe			

Motivation

The Basic Problem That We Studied

Model Analysis

- Equivalence
- Approach
- Previous Work

Construction

2

Self-paced Curriculum Learning

Motivation	Model Analysis	Construction	Self-paced Curriculum Learning	Summary
000				
The Basic Problem	That We Studied			
Outli	ine			

Motivation

• The Basic Problem That We Studied

Model Analysis

- Equivalence
- Approach
- Previous Work

3 Construction

- Data set $D = (x^i, y^i)_{i=1}^n$
- Decision function p(x, w), w model parameter
- Loss function $L^{i}(y^{i}, p(x^{i}, w)), l = (L^{1}, \cdots, L^{n})^{T}$
- λ a parameter controlling the learning space

The SPL model contains a weighted loss term $\langle v, l \rangle$, a model regularizer $\phi(w)$ and a self-paced regularizer $f(v, \lambda)$ imposed on sample weights, expressed as

$$\inf_{w,v\in[0,1]^n} E(w,v;\lambda) = \inf_{w,v\in[0,1]^n} \{\langle v,l\rangle + f(v,\lambda) + \phi(w)\}$$

Concave Conjugate vs. Convex Conjugate

The **concave conjugate** of function g(v) is defined by the following

$$g^*(l) = \inf_{v \in \mathbb{R}^n} \{ \langle v, l \rangle - g(v) \}$$

The **convex conjugate** of $f(v)^1$ is defined by

$$f^*(l) = \sup_{v \in R^n} \{ \langle v, l \rangle - f(v) \}$$

According to Fenchel's paper, $g^*(l)$ has the following properties

- upper semi-continuous
- concave

¹Let f(v) = -g(v); the concave conjugate and convex conjugate has the following relation

$$g^*(l) = -f^*(-l)$$

Motivation	Model Analysis	Construction	Self-paced Curriculum Learning	
Equivalence				
Outline				

Motivation

• The Basic Problem That We Studied

2 Model Analysis

Equivalence

- Approach
- Previous Work

Construction

Motivation	Model Analysis	Construction	Self-paced Curriculum Learning	
Equivalence				
Fau	ivalence of SPL	model		

Latent Object Function and Its Properties

For concise presenting, we disregard $\boldsymbol{\lambda}$

$$\inf_{\substack{w,v \in [0,1]^n \\ w}} E(w,v) = \inf_{\substack{w,v \in [0,1]^n \\ w}} \{\langle v,l \rangle + f(v) + \phi(w) \}$$
$$= \inf_{\substack{w \\ w}} \{\phi(w) + \inf_{\substack{v \in [0,1]^n \\ v \in [0,1]^n}} \{\langle v,l \rangle + f(v) \} \} = \inf_{\substack{w \\ w}} \{\phi(w) + g^*(l(w)) \}$$

We call $F(l) = g^*(l)$ the latent object function, and SPL model turns into

$$\inf_{w,v\in[0,1]^n} E(w,v) = \inf_{w} \{\phi(w) + F(l(w))\}$$

F(l) has the following properties

- upper semi-continuous
- concave
- increasing

Motivation 000	Model Analysis	Construction	Self-paced Curriculum Learning	
Equivalence				
Equi	valence Class o	f SPL regulariz	er	

Assumption 2 f(v) satisfies the following properties on $[0, 1]^n$

- f(v) is convex
- 2 f(v) is lower semi-continuous
- $int(dom f(v)) \cap int([0,1]^n) \neq \emptyset$

Motivation 000	Model Analysis	Construction	Self-paced Curriculum Learning	
Approach				
Outlir	ne			

Motivation

• The Basic Problem That We Studied

2 Model Analysis

- Equivalence
- Approach
- Previous Work

3 Construction

Motivation 000	Model Analysis	Construction	Self-paced Curriculum Learning	
Approach				
Solv	ing the SPL mod	del		
Alternativ	e Optimization Strategy			

Optimize $\inf_{w,v \in [0,1]^n} v$, *w* respectively, and suppose f(v) satisfies **Assumption 2**. in

$$E(w, v) = \inf_{w, v \in [0,1]^n} \{ \langle v, l \rangle + f(v) + \phi(w) \}$$

= $\inf_{w} \{ \phi(w) + \inf_{v \in [0,1]^n} \{ \langle v, l \rangle + f(v) \} \} = \inf_{w} \{ \phi(w) + g^*(l(w)) \}$

According to the theorem in Convex Analysis, the following regime of AOS step can be derived.

update v

$$v^{i} = \arg \inf_{v \in [0,1]^{n}} E(w^{i-1}, v) = \arg \inf_{v \in [0,1]^{n}} \{\langle v, l \rangle + f(v)\} = \partial F(l(w^{i-1}))$$

update w

$$w^{i} = \arg \inf_{w} E(w, v^{i}) = \arg \inf_{w} \{ \langle v^{i}, l(w) \rangle + \phi(w) \}$$

Motivation	Model Analysis	Construction	Self-paced Curriculum Learning	
Previous Work				
Outline				

Motivation

• The Basic Problem That We Studied

2 Model Analysis

- Equivalence
- Approach
- Previous Work

3 Construction

< A

Motivation 000	Model Analysis ○○○○○○●	Construction	Self-paced Curriculum Learning	
Previous Work				
	ving the SPL mod ation Minimization vs. Altern		ategy	

 In Deyu Meng's paper, the equivalence of Majorization Minimization and Alternative Optimization Strategy implemented on SPL model was proven by constructing the surrogate function²

$$Q_{\lambda}(w|w^*) = F_{\lambda}(l(w^*)) + \nabla F_{\lambda}(l(w^*))(l(w) - l(w^*))$$

² in case that $F_{\lambda}(l)$ is differentiable

Motivation 000	Model Analysis	Construction	Self-paced Curriculum Learning	
Late	ent Object functio	n		

An approach to design SP-regularizer: First, design v(l) satisfying $v_i(l)$ decrease with respect to l_i and

$$\lim_{l_i \to 0} v_i(l) = 1 \quad \lim_{l_i \to +\infty} v_i(l) = 0$$

and one could put the loss prior of different joint loss in it (Recommend that $v_i(l) = 1 \forall l_i < 0$);

Then, integrate v(l) to obtain $F(l) = g^*(l)$; Last, $f(v, \lambda) = -\lambda g^{**}(v) = -\lambda g(v)$ and if F(l) is strictly concave there is a shortcut that one can obtain l(v) by calculating the inverse function of v(l) then $g(v) = \langle v, l(v) \rangle - F(l(v))$

Motivation	Model Analysis	Construction	Self-paced Curriculum Learning	
SP-r	egularizer			

Another approach to design SP-regularizer also can be derived by disregarding $\lim_{l_i\to 0} v(\lambda, l) = 1.$ First, design f(v); let f(v) satisfy

• $int(dom f(v)) \cap (0,1)^n \neq \emptyset$ and $0, \mathbf{1} \in cl(dom f(v))$

2 f(v) is convex, differentiable, lower semi-continuous in $v \in [0, 1]^n$;

Then, obtain $l(v) = \partial(-f(v)) = \partial g(v)$ and calculate its inverse function v(l); Last,

integrate v(l) to obtain $F(l) = g^*(l)$ or calculate $F(l) = g^*(l) = \langle v(l), l \langle +f(v(l)) \rangle$;

 $f(v, \lambda) = \lambda f(v), F_{\lambda}(l) = \lambda F(\lambda^{-1}l) \text{ and } v(\lambda, l) = v(\lambda^{-1}l)$

The simplest SP-regularizer is $\lambda f(v)$. One can find that most of SP-regularizers, commonly appearing in SPL, can be generated in this way

The reason why it works is the following.

Let g(v) = -f(v) and let the concave conjugate of $g^*(l) = F(l)$

$$F_{\lambda}(l) = (\lambda g(v))^* = \inf_{v \in [0,1]^n} \{ \langle v, l \rangle - \lambda g(v) \}$$
$$= \lambda \inf_{v \in [0,1]^n} \{ \langle v, \lambda^{-1}l \rangle - g(v) \} = \lambda F(\lambda^{-1}l)$$

Since g(v) is strictly concave, F(l) is differentiable and the original $v^*(l) = \nabla F(l)$. It yields,

$$v^*(\lambda, l) = \nabla_l F_\lambda(l) = \lambda \nabla_l F(\lambda^{-1}l) = v^*(\lambda^{-1}l)$$

Motivation 000	Model Analysis	Construction	Self-paced Curriculum Learning	
Ade	parameter			

Thus, $v_i^*(\lambda, l)$ increase with respect to λ , and it holds that $\forall i \in \{1, 2, \dots, n\}$, $\lim_{\lambda \to 0} v_i^*(\lambda, l) = \lim_{\lambda \to 0} v_i^*(\lambda^{-1}l) = 0 \text{ and } \lim_{\lambda \to +\infty} v_i^*(\lambda, l) = \lim_{\lambda \to +\infty} v_i^*(\lambda^{-1}l) = 1$ One can also consider the hypograph of $F_\lambda(l)$, the set of points lying on or below its graph

hyp
$$F_{\lambda}(l) = \{(l, u) : l \in \mathbb{R}^n, u \in \mathbb{R}, u \leq \lambda F(\lambda^{-1}l)\} = \lambda$$
 hyp $F(l)$

As a result, the geometric interpretation of the effect of age parameter here is that it enlarges the hypograph of F(l) by multiplying λ .

In [Self-paced Curriculum Learning, LuJiang, Deyu Meng] paper, they put the prior knowledge into model by the constraints on the feasible region of v denoted by Ψ .

Suppose f(v) satisfying **Assumption 2**, let $F(l) = \inf_{v \in [0,1]^n} \{\langle v, l \rangle + f(v)\}$ denote the concave conjugate of -f(v).

In this case, we have

$$F^{new}(l) = \inf_{v \in [0,1]^n \cap \Psi} \{ \langle v, l \rangle + f(v) \} = \inf_{v \in [0,1]^n} \{ \langle v, l \rangle + f(v) - \delta(v | \Psi)^3 \}$$

$$\inf_{w,v \in [0,1]^n \cap \Psi} E(w,v) = \inf_{w} \{ \phi(w) + F^{new}(l(w)) \}$$

 ${}^{3}\delta(v|\Psi) = 0 \; \forall v \in \Psi \;\; \delta(v|\Psi) = -\infty \; \forall v \notin \Psi$

Motivation	Model Analysis	Construction	Self-paced Curriculum Learning	
Sup	Convolution			

sup convolution

$$(f \oplus g)(v) = \sup_{v^1 + v^2 = v} \{f(v^1) + g(v^2)\}$$

Theorem 0 Let g_1, \dots, g_m be proper concave function on \mathbb{R}^n . Then

$$(g_1\oplus\cdots\oplus g_m)^*=g_1^*+\cdots+g_n^*$$

$$(clg_1 + \cdots + clg_m)^* = cl(g_1^* \oplus \cdots \oplus g_m^*)$$

If sets, the relative interior of $(dom g_i)$, $i = 1, \dots, m$, have a point in common, the closure operation can be omitted from the second formula, and

$$(g_1 + \cdots + g_m)^* = g_1^* \oplus \cdots \oplus g_m^*$$

Motivation 000	Model Analysis	Construction	Self-paced Curriculum Learning	
_				

$$F^{new}(l) = \inf_{v \in [0,1]^n \cap \Psi} \{ \langle v, l \rangle + f(v) \} = \inf_{v \in [0,1]^n} \{ \langle v, l \rangle + f(v) - \delta(v|\Psi)^4 \}$$
$$= (-f(v) + \delta(v|\Psi))^* = (F \oplus \delta^*(\cdot|\Psi))(l)$$

Theorem 4 Suppose f(v) is essential strictly convex and satisfies **Assumption 2**. Suppose we have knowledge of the weight variable v, denoted by $v^T k \ge 0$ corresponding to $\Psi = \{v | v^T k \ge 0\}$. If $\Psi \cap dom f \cap [0, 1]^n \neq dom f \cap [0, 1]^n$ $int(\Psi) \cap int(dom f) \cap int([0, 1]^n) \neq \emptyset$

Then

$$\nabla F^{new}(l)^T k = v^{new}(l)^T k \ge 0$$

$${}^{4}\delta(v|\Psi) = 0 \; \forall v \in \Psi \; \; \delta(v|\Psi) = -\infty \; \forall v \notin \Psi$$

Motivation 000	Model Analysis	Construction	Self-paced Curriculum Learning	

Suppose f(v) is essential strictly convex and satisfies **Assumption 2**. Curriculum region $\Psi = \{v | v^T k \ge 0\}$ satisfies $\Psi \cap dom f \cap [0, 1]^n \ne dom f \cap [0, 1]^n$ $int(\Psi) \cap int(dom f) \cap int([0, 1]^n) \ne \emptyset$

$$\begin{split} F^{new}(l) &= \inf_{v \in [0,1]^n \cap \Psi} \{ \langle v, l \rangle + f(v) \} = \inf_{v \in [0,1]^n} \{ \langle v, l \rangle + f(v) - \delta(v | \Psi)^5 \} \\ &= (-f(v) + \delta(v | \Psi))^* = (F \oplus \delta^*(\cdot | \Psi))(l) = (F \oplus \delta(\cdot | \Psi^{\circ 6}))(l) \\ &= \sup_{l^1 + l^2 = l} \{F(l^1)) + \delta(l^2 | \Psi^{\circ}) \} = \sup_{l^1 \in l - \Psi^{\circ}} F(l^1) = \sup_{l^1 \in l - ray_k} F(l^1) \end{split}$$

 ${}^{5}\delta(\nu|\Psi) = 0 \,\forall \nu \in \Psi \,\,\delta(\nu|\Psi) = -\infty \,\forall \nu \notin \Psi$ ${}^{6}\Psi^{\circ} = \{l|\forall \nu \in \Psi \,\langle \nu, l \rangle \ge 0\} = \{\beta k|\beta \ge 0\}$

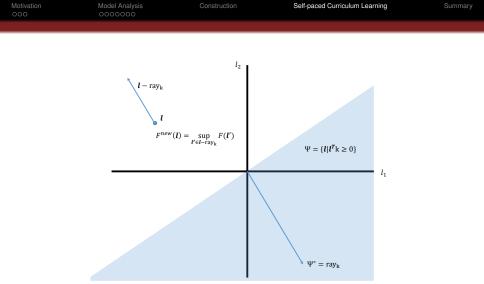


Figure: Sketch map for the value of $F^{new}(l)$ in 2 dimension

ъ

3

1.2

Motivation	Model Analysis	Construction	Self-paced Curriculum Learning	

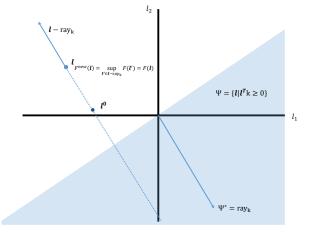


Figure: Sketch map for the value of $F^{new}(l)$ in 2 dimension

315

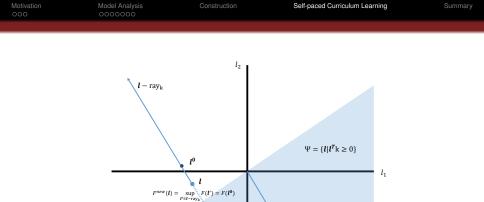


Figure: Sketch map for the value of $F^{new}(l)$ in 2 dimension

 $\Psi^{\circ} = ray_k$

ъ

Motivation 000	Model Analysis	Construction	Self-paced Curriculum Learning	
Critic	cal Region			

$$F^{new}(l) = \sup_{\beta \ge 0| \ l^1 = l - \beta k} F(l^1) = \begin{cases} F(l) & l^0(l) \notin l - ray_k \\ F(l^0(l))(\ge F(l)) & l^0(l) \in l - ray_k \end{cases}$$

The most important thing for determining F^{new} is to determine the critical region $l^0(\mathbb{R}^n)$.

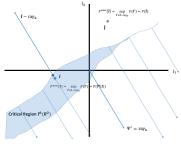


Figure: Sketch map of the critical region

Motivation	Model Analysis	Construction	Self-paced Curriculum Learning	

The most important thing for determining F^{new} is to determine the critical region $l^0(\mathbb{R}^n)$.

$$l \in l^{0}(\mathbb{R}^{n}) \Longleftrightarrow 0 = \nabla_{\beta}F(l - \beta k)|_{\beta = 0} = -\nabla F(l)^{T}k \Longleftrightarrow \nabla F(l) \in k^{\perp} \Longleftrightarrow l \in \partial g(k^{\perp})$$

So finally, it yields

$$F^{new}(l) = \begin{cases} F(l) & l \in \partial g(k^{\perp}) - ray_k \\ F(l^0(l))(\geq F(l)) & l \in \partial g(k^{\perp}) + ray_k \end{cases}$$

Notice $int(dom f \cap [0,1]^n) = int(dom g) \subset dom \ \partial g \subset dom \ g = dom f \cap [0,1]^n$

For instance, we set $f(v) = -g(v) = -\log(v_1) - \log(v_2)$ $v = (v_1, v_2) \in (0, 1]^2$. Notice that f(v) is strictly convex, thus F(l) will be differentiable.

Since in this case the function f(v) can be separated into the sum of $f_1(v_1)$ and

 $f_2(v_2)$, we can easily calculate F(l) and v(l).

$$l_{1}(v_{1}) = \partial g_{1}(v_{1}) = \begin{cases} 1/v_{1} & v_{1} \in (0,1) \\ (-\infty,1] & v_{1} = 1 \end{cases}$$

Thus, $v_{1}(l_{1}) = (\partial g_{1})^{-1}(l_{1}) = \begin{cases} 1/l_{1} & l_{1} \in (1,+\infty) \\ 1 & l_{1} \in (-\infty,1] \end{cases}$
Then $F_{1}(l_{1}) = v(l_{1})l_{1} - g_{1}(v_{1}(l_{1})) = \begin{cases} 1 + \log l_{1} & l_{1} \in (1,+\infty) \\ l_{1} & l_{1} \in (-\infty,1] \end{cases}$

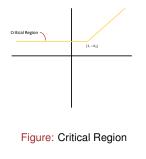
Motivation	Model Analysis	Construction	Self-paced Curriculum Learning	

Similarly, we can obtain $F_2(l_2)$. It yields $F(l) = F_1(l_1) + F_2(l_2)$.

Suppose the curriculum region $\Psi = \{v | v^T k \ge 0\}$ satisfies the previous conditions in section 1. Besides, $0 \le k_1 = 1 \le -k_2$.

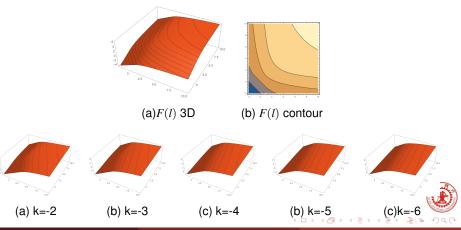
Then the critical region with respect to Ψ ,

$$\partial g(k^{\perp} \cap \operatorname{dom} f \cap [0,1]^n) = (1,+\infty) \begin{pmatrix} 1 \\ -k_2 \end{pmatrix} \cup \begin{pmatrix} (-\infty,1] \\ -k_2 \end{pmatrix}$$



Motivation 000	Model Analysis	Construction	Self-paced Curriculum Learning	Summary

$$F^{new}(l) = \begin{cases} F(l) & l_2 > -k_2 l_1 \text{ and } l_2 > -k_2 l_1 \\ F(l_1 + \frac{l_2 + k_2 l_1}{-2k_2}, -k_2 l_1 + \frac{l_2 + k_2 l_1}{2}) & (l_2 \le -k_2 \text{ or } l_2 \le -k_2 l_1) \text{ and } l_2 \ge k_2 (l_1 - 2) \\ F(l_1 - \frac{k_2 + l_2}{k_2}, -k_2) & (l_2 \le -k_2 \text{ or } l_2 \le -k_2 l_1) \text{ and } l_2 < k_2 (l_1 - 2) \end{cases}$$



Shiqi Liu, Instructor:Deyu Meng ()

Short Paper Title

Motivation 000	Model Analysis	Construction	Self-paced Curriculum Learning	

The following picture illustrates the influence of

$$\Psi = \left\{ v | v^T \begin{pmatrix} 1 \\ k_2 \end{pmatrix} \right\} \ge 0 \text{ for } k_2 = -2, \cdots, -6$$

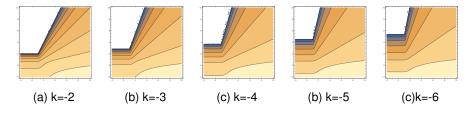


Figure: $\log[F^{new}(l) - F(l)]$

 $F^{new}(l) - F(l) = 0$ on the white area.

Image: A matrix

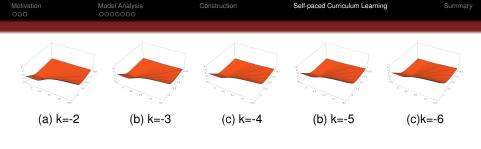
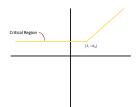
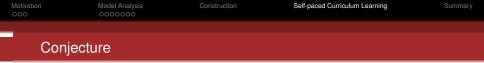


Figure: $F^{new}(l) - F(l)$



ъ



Can the Critical Region always be calculated by $\partial g(e)$ where e is boudary(Ψ) \cap dom g ?

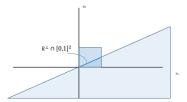


Figure: Critical Edge

Motivation 000	Model Analysis	Construction	Self-paced Curriculum Learning	Summary
Sum	marv			

Our work

- Theoretically improves the Self-paced learning
- Provides with two general approaches to design the SPL model
- Theoretically improves the Self-paced curriculum learning
- Illustrates the influence of the some curriculum
- may be applied to Non-convex analysis

For Further Reading

For Further Reading I

R.Tyrrell Rockafellar.

Convex Analysis.

PRINCETON UNIVERSITY PRESS, 1997.

Deyu Meng, Qian Zhao.

What's The Insight of Self-paced Learning

Lu Jiang, Deyu Meng, Qian Zhao

Self-paced Curriculum Learning

AAAI

Appendix O

For Further Reading

Thank You!

Shiqi Liu, Instructor:Deyu Meng ()